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Abstract
A bond-order–bond-length–bond-strength (bond-OLS) correlation mechanism
is presented for consistent insight into the origin of the shape-and-size
dependence of a nanosolid, aiming to provide guidelines for designing
nanomaterials with desired functions. It is proposed that the coordination
number imperfection of an atom at a surface causes the remaining bonds of
the lower-coordinated surface atom to relax spontaneously; as such, the bond
energy rises (in absolute value). The bond energy rise contributes not only to
the cohesive energy (ECoh) of the surface atom but also to the energy density
in the relaxed region. ECoh relates to thermodynamic properties such as self-
assembly, phase transition and thermal stability of a nanosolid. The binding
energy density rise is responsible for the changes of the system Hamiltonian
and related properties, such as the bandgap, core-level shift, phonon frequency
and the dielectrics of a nanosolid of which the surface curvature and the
portion of surface atoms vary with particle size. The bond-OLS premise,
involving no assumptions or freely adjustable parameters,has led to consistency
between predictions and experimental observations of a number of outstanding
properties of nanosolids.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

With miniaturization of a solid down to nanometre scale, quantum and interfacial effects
become dominant. Such effects have led to amazing changes of many properties of a single
nanosolid and its assemblies, which forms the base of nanoscience and nanotechnology. The
classical characteristics of a solid, such as the surface stress, Young’s modulus, phonon
frequency, specific heat, critical temperatures for melting, phase transition or evaporation,
energy bandgap, core-level shift and dielectric constant as well as the saturation magnetization,
are all no longer constant but they are tunable by simply controlling the shape and size of the
physical system. Such a freedom of property change has been leading to a revolution in
materials science and device technology. However, the origin, the trends and the amplitudes
of the size-related changes are still far from clear; for instance, conflicting models such as
quantum confinement [1], surface stress [2], surface states [3] and impurity centres [4] have
been frequently referred to for a certain specific phenomenon such as the blue-shift in the
photoluminescence of nanometric semiconductors. Here we present a simple mechanism, free
from assumptions or freely adjustable parameters,aiming to unify as far as possible the changes
caused by changing the shape and size of the physical system and to provide guidelines for
designing nanomaterials with desired functions.

2. Model

2.1. Principles

2.1.1. Bond-order–bond-length–bond-strength correlation mechanism. The termination of
the lattice periodicity in the surface normal has two consequences. First, the imperfection of
the coordination numbers (CNs) of a surface atom causes the lengths of the remaining bonds
of this lower-coordinated surface atom to relax [5, 6]. As the relaxation (both contraction and
expansion) is a spontaneous process, the binding energy of the relaxed bond will reduce (rise
in absolute value) to minimize the system energy. The relaxed bond is also stronger. Such a
bond-order–bond-length–bond-strength (bond-OLS) correlation premise has been recognized
as the force that drives the O–Cu(001) surface to reconstruct, and the O–Cu bond to contract
by 4–12%, that forms one of the four discrete stages of the Cu3O2 bonding kinetics at the
O–Cu(001) surface [7, 8]. It is important to note that the bond relaxation is independent of the
nature of the specific chemical bond [9] or the dimension of the solid [10] though the extent
of relaxation may vary from situation to situation (see samples in table 1).

The CN-imperfection-induced bond relaxation can be defined as di = ci d by introducing
a coefficient ci < 1 for bond contraction and ci > 1 for bond expansion. As listed in table 1,
most of the bonds contract, which has an enormous effect on the properties of a surface. Bond
expansion might happen but the system energy must be minimized, unless the relaxation is a
process proceeding under external stimulus such as heating or pressure. The bond contraction
and the response of bond energy can be expressed as

�di

d
= ci − 1 < 0;

�EB(di)

EB(d)
= EB(di)

EB(d)
− 1 = c−m

i − 1 > 0.

(1)

Subscript i denotes the i th atomic layer, which may be counted up to three from the outermost
atomic layer to the centre of the solid as no CN reduction is expected for i > 3. m describes the
bond-length dependence of the binding-energy change, EB(di) = c−m

i EB(d), at equilibrium
atomic separation. d and EB(d) are the corresponding bulk values. c−m

i is independent of
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Table 1. Bond length relaxation for typical covalent, metallic and ionic solids and its effect on
the physical properties of the corresponding solid or surface, where d and d1 are the bond lengths
for atoms inside the bulk and for atoms at the surface, respectively. c1 is the bond contraction
coefficient, that varies from source to source.

Bond nature Medium c1 = d1/d Effect

Covalent Diamond {111} [11] 0.7 Surface energy decrease
Metallic Ru [12] Co [13] and 0.9

Re [14] (1010) surfaces 0.9 Atomic magnetic momentum
Fe–W, Fe–Fe [15] 0.88 is increased by (25–27)%
Fe(310) [16], N(210) [17] 0.88 [15–17]
Al(001) [18] Cohesive energy rises by
Ni, Cu, Ag, Au, Pt and 0.85–0.9 0.3 eV/bond [18].
Pd dimer bond [19] Single-bond energy increases
Ti, Zr [20] 0.7 2–3-fold [19]
V [20] 0.6

Ionic O–Cu(001) [8, 21] 0.88–0.96
O–Cu(110) [8] 0.9 N–TiCr surface is 100%
N–Tr/Cr [22] 0.86–0.88 harder that the bulk [22].

Extraordinary (Be, Mg) (0001) Zn, Cd >1 No indication of effects on
cases and Hg dimer bond [20] physical properties is yet given.

the types of interatomic potential. Exercises so far [23–25] revealed that for elemental solids,
m ≈ 1; for compounds and alloys, m ≈ 4.

Figure 1 illustrates the bond-OLS correlation mechanism, showing that the bond becomes
shorter and stronger if the effective CN (zi ) decreases. The solid curve in panel (a) formulates
the CN (zi ) dependence of the bond length, ci (zi), based on the Goldschmidt premise [6]
which states that an ionic radius contracts by 12, 4 and 3% if the CN of the atom reduces
from 12 to four, six and eight, respectively. Feibelman [20] has noted a 30% contraction of
the metallic dimer bond length of Ti, Zr and a 40% contraction of the dimer bond length of
V , which is also in line with the formulation. The function ci (zi) is so established that it fits
the observations [6, 20] aiming to reduce the number of freely adjustable parameters. The
bond-OLS correlation can be formulated as [23]

di = ci d

EB(di) = c−m
i EB(d)

ci (zi) = 2

1 + exp[(12 − zi)/8zi ]
.

(2)

The bond-OLS premise does not apply to the so-called dangling bond, as a dangling bond is not
a real bond forming between two neighbouring atoms. It is true that the concept of localized
bond is not applicable to metallic systems due to the delocalized valence electrons whose
wavefunction often extends to the entire solid. However, the delocalized valence electrons are
often treated as a Fermi sea inside which the metal ions are arranged regularly. As a standard
practice [26], the metallic bond length corresponds to the equilibrium atomic separation and
the bond energy is defined as the division of the atomic ECoh by the CN in a real system.
Therefore, the bond-OLS premise holds for any solid disregarding the nature of the specific
chemical bond. The pair-wise potential for metallic interatomic interaction also holds, as
the pair-wise potential represents the resultant effect of various orders of coordination and
the charge-density distribution. Most strikingly, recent density functional calculations [19]
revealed that the dimer bond of Ni, Cu, Ag, Au, Pt and Pd contracts by 10–15% in the single
atomic chain compared with the corresponding fcc bulk values. Meanwhile, ECoh per bond
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(a)

(b)

Figure 1. Illustration of the bond-OLS correlation mechanism [25]. The solid curve ci (zi ) is
derived based on the premise of Goldshmidt (open circles) [6] and findings of Feibelman (open
square) [20]. As a spontaneous process of bond contraction, the bond energy at equilibrium atomic
separation will rise in absolute energy. That is, EB(di ) = c−m

i EB (d). ci is the contraction factor
and m a parameter that varies with the nature of bond. For elemental solids, m ≈ 1; for compounds,
m ≈ 4 [25, 26].

increases two- to threefold when the single atomic chain forms. This finding not only concurs
with the current bond-OLS correlation mechanism but also evidences the validity of the bond-
OLS premise for metallic systems.

2.1.2. Barrier confinement—quantum uncertainty. Termination of the lattice periodicity
creates the work function, ϕ(=E0 − EF (n2/3)), that depends merely on the electronic density
(n) at the surface. E0 and EF are the vacuum energy and the Fermi level, respectively. The
surface charge density is modified by the surface chemical states [28]. For instance, the work
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function of a metal surface can be reduced by ∼1.2 eV through oxidation, that produces
metal dipoles at the surface [27]. The reduced work function can also be recovered when a
hydrogen-like bonds form at the surface.

The termination of a lattice also generates a barrier of potential energy to the surface. The
potential barrier [28] does not contribute to the system’s energy. It should be noted that the
barrier has no influence on the strongly localized valence electrons or the bonding electron pairs
inside a compound. The barrier only confines the nearly free conduction electrons moving
inside metals. However, the barrier confinement is subject to the quantum uncertainty principle.
The quantum uncertainty principle indicates that reducing the dimension of a space (D, such
as the diameter of a spherical dot), inside which an energetic particle moves, increases the
fluctuation, �p, rather than the mean value, p, of the momentum (D ×�p = h̄) or the kinetic
energy (E = p2/2µ) of the energetic particle with effective mass µ. h̄ is the Planck constant.
Therefore, being subject to quantum uncertainty, barrier confinement does not contribute to
the system energy no matter what the bond nature involved in the nanosolid.

2.1.3. Surface versus nanosolid. For a solid of nanometre scale, the surface curvature and
the portion of surface atoms increase with decreasing particle size. Therefore, the effect of CN
imperfection will be more significant with reducing solid size. It is easy to derive the volume
or number ratio of a certain atomic layer, denoted i , to that of the entire solid as

γi = Ni

N
= Vi

V
= τ [k − (i − 0.5)]τ−1

kτ − Lτ
ci = γi0ci � 1, (3)

where D = (2k + 1)d and k is the number of atoms arranged along the radius of a spherical
dot or a rod with N − 1 atoms surrounding one in the centre. D is also the thickness of a thin
plate. τ is the dimensionality of a thin plate (τ = 1), a rod (τ = 2) and a spherical dot (τ = 3)
nanometers across. L is the number of atomic layers not occupied by atoms. For a solid
system, L = 0; while for a hollow sphere or a hollow tube, L < k. For a hollow system, the
γi should count both external and internal sides of the hollow system. With reducing particle
size, the performance of surface atoms will dominate because at the smallest size (k < 3) γ1

approaches unity.

2.2. Numerical expressions

Generally, the mean relative change of a traditional quantity Q of a nanosolid containing N
atoms, with dimension D, can be expressed as Q(D), and as Q(∞) for the same solid without
considering the effect of surface relaxation. Q(D) relates to Q(∞) = Nq as follows:

Q(D) = (N − Ns)q + Ns qs = Nq + Ns (qs − q). (4)

q and qs correspond to the density of Q inside the bulk and in the surface region, respectively.
Ns = ∑

Ni is the number of atoms in the surface atomic shells. Equation (4) leads to the
immediate relation

�Q(D)

Q(∞)
= Q(D) − Q(∞)

Q(∞)
= Ns

N

(
qs

q
− 1

)
=

∑
i�3 Ni (qi − q)

Nq
=

∑
i�3

γi(qi/q − 1)

=
∑
i�3

γi(�qi/q). (5)

The weighting factor, γi , is the surface-to-volume ratio (see equation (3)) that changes with
the dimension (k) and dimensionality (τ ) of the solid.
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Equation (5) represents that the size-and-shape dependence of a detectable quantity for a
nanosolid is composed of two essential parts. One is the origin, �qi/q , that determines the
sign and amplitude of change; and the other is the weighting factor, γi , that determines the
trend of change. It is worth noting that �Q(D)/Q(∞) converges at any size as γi is no larger
than unity and the relative change of �q/q is always finite.

Physical quintiles of a solid can normally be categorized as follows.

(i) Quantities relating directly to bond length, such as the mean lattice constant, atomic
density and binding energy.

(ii) Quantities relating to the atomic cohesive energy, ECoh = z EB , such as the self-
organization growth, phase stability, Coulomb blockade and critical temperature for
liquidation, evaporation and phase transition of a nanosolid [29].

(iii) Properties relating to the binding energy density in the relaxed region, q = v(di ).
v(di) is proportional to the single bond energy EB(di) because the number of bonds
per circumferential area between neighbouring atomic layers in the relaxed region does
not change. The energy density contributes to the Hamiltonian that determines the entire
band structure and related properties such as bandgap, core level, magnetization, phonon
frequency, Young’s modulus, surface energy and surface stress.

Therefore, if one knows the functional dependence of q on atomic separation or its
derivatives, the size-and-shape dependence of the quantity Q of a nanometric system is then
definite. This means that one can design materials composed of nanosolids with desired
functions based on the prediction, simply by tuning the shape and size of the solid. Typical
samples will be analysed in the next section.

3. Analysis

3.1. Lattice contraction

For a freestanding nanosolid the lattice constants are often measured to contract, while for
a nanosolid embedded in a matrix of different materials or passivated chemically the lattice
constants may expand. For example, oxygen chemisorption could expand the first metallic
interlayer by up to 10–25% though the oxygen–metal bond contracts [13, 27, 30]. Yu et al
[31] found that the mean lattice constants of Sn and Bi nano-particles contract with decreasing
particle size. The contraction of the c-axis lattice is more significant than that of the a-axis
lattice. By examining the bond length between neighbouring atoms of Ag, Cu, Ni and Fe in
different structures, Kara and Rahman [32] found that these elements follow a strong bond-
order–bond-length correlation [20]. Because of this correlation, the bond length between an
atom and its neighbours would decrease with decreasing coordination. Thus the lengths of the
dimer bond (2.53, 2.22, 2.15 and 2.02 Å, for Ag, Cu, Ni and Fe, respectively [20]), are shorter
than the nearest-neighbouring distance in their respective bulk values by 12.5% for Ag, 13.2%
for Cu, 13.6% for Ni and 18.6% for Fe. The pattern of dimer bond relaxation coincides with the
surface relaxations of the top layer atoms for these elemental solids with various orientations.

Figure 2(a) shows the consistency between predictions and measurements of the size
dependence of lattice contraction of Ni, Cu and Ag nanosolids based on the relation [10]

�d(D)

d(∞)
=

∑
i�3

γi(ci − 1) (6)

and the relation of equation (1) with the effective CN of z1 ∼ 4 (c1 = 0.90, 0.88), z2 =
6(c2 = 0.97, 0.96) which covers the contribution from high order CN and the charge density.
Agreement for the size dependent lattice strain of Bi and Sn has been given in [10].
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(a)

(b)

Figure 2. Agreement between predictions and observations on the size dependence of (a) the
mean lattice contraction of Ni, Cu and Ag nanoparticles [33] and (b) the Young’s modulus of
Ni (I [38], II [39]), Cu (I [38], II [39]) and Ag [39] thin films. Agreement is reached by taking
z1 = 4 (c1 = 0.88, 0.9), z2 = 6 (c2 = 0.96, 0.97) and m = 1.

3.2. Surface stress and nanobeam mechanics

3.2.1. Surface stress. Surface stress links the microscopic bonding configuration at an
interfacial region with its macroscopic properties [33, 34]. It plays a central role in
the thermodynamics and acoustics of solid surfaces. During the last decade, increasing
interest has been paid to processes that are strongly influenced by surface stress effects
such as reconstruction, interfacial mixing, segregation and self-organization at solid surfaces.
However, detailed knowledge about the underlying atomistic processes of surface stress is yet
lacking. The fact of surface bond contraction and its effect on the bond energy may provide us
with the possible physical origin for surface and interface stress formation, besides the surface
stress caused by chemical reaction.
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The Young’s modulus (E) and the stress (P) at a surface can be expressed as functions
of the binding energy, EB , volume, v ∝ d3, and atomic distance, d . E and P share the same
dimension [22]:

P = −∂u(r)

∂v

∣∣∣∣
r=d

∝ EB/d3;

E = v
∂ P

∂v
= v

∂2u(r)

∂v2

∣∣∣∣
r=d

∝ EB/d3.

(7)

The relative change of the local Ei and Pi shares a common dimensionless form:

�Ei

E
= �Pi

P
= �EB(di)

ε
− 3

�di

d
= c−m

i − 1 − 3(ci − 1) = c−m
i − 3ci + 2 > 0. (8)

This relation implies that both E and P at a surface should be higher than their bulk values
and the changes of both E and P follow the same trends because of the bond-OLS correlation.

An examination of the hardness (also stress) and the Young’s modulus of a TiCrN surface
using nanoindentation [22] revealed that the surface hardness of the TiCrN thin film (2 µm
thick) is 200% higher than its bulk value. Similar results have been observed by Shi et al
[35] from amorphous carbon thin films and by Caceres et al [36] from an AlGaN surface.
Solving equation (8) with the measured value of �P/P = 1 gives rise to the ci value 0.883,
that corresponds to m = 4 [22]. Figure 2(b) shows the thickness dependence of the Young’s
modulus of Ni (I [37], II [38]), Cu (I [37], II [38]) and Ag [38] thin films. Calculation was
based on a weighted sum over the top two atomic layers with the data z1 = 4, z2 = 6 and
m = 1 for the pure metals. At the thinner end of the limit, D = 0.5 nm (two atomic layers), the
Young’s modulus of Cu is 100% higher than the bulk value, which agrees with that detected
from the TiCrN surface [22].

3.2.2. Nanobeam mechanics. According to equations (3) and (6), one can derive that, for a
solid nanorod,

∑�3
i=1 γi ∝ 1/k < 1. This means that the overall �Q/Q of a solid nanorod

varies approximately with the inverse radius (1/k) of the rod and the value should be higher
than the corresponding bulk value. However, for a hollow nanotube with a limited number of
walls,

∑�3
i=1 γi ≈ 1; �Q/Q arises from all the atoms at the sites with strong CN reduction.

�Q/Q approaches a constant value depending less on the diameter of the tube. Q(D) is much
greater than any bulk value including the rod of the same material as Q(D) arises from atoms
that are all at the surface region. These predictions agree well with the discovery of Wong
et al [39] on the radius dependence of the Young’s modulus of SiC nanorods and multi-walled
carbon nanotubes. By using atomic force microscopy, Wong et al found that the multi-walled
carbon nanotubes are about twice as stiff as the SiC nanorods and that the strengths of the SiC
nanorods are substantially greater than those found for large SiC structures (600 GPa). The
Young’s modulus is 610 and 660 GPa for SiC rods of 23.0 and 21.5 nm across, respectively.
For hollow carbon tubes, the modulus is 1.28 ± 0.59 TPa with no apparent dependence on the
diameter of the nanotubes.

Findings of the surface stress enhancement, thickness and radius dependence of the
Young’s modulus of the thin Ni, Cu and Ag metal plates and the C and SiC nanobeams provide
direct evidence for the essentiality of the bond-OLS correlation premise and its consequences
on the mechanical strength of a surface and nanobeams. Therefore, the surface stress and its
corresponding properties result from the spontaneous bond relaxation at the surface, rather
than the inverse sequence that the surface stress compresses the surface bond to contract.
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3.3. Critical temperature for melting and phase transition

It is understandable that the melting or phase transition of a solid requires heat energy close
to the cohesive energy of this system containing numerous atoms. This fact allows the size
dependence of the critical temperature for phase transition and melting of a nanosolid to be
formulated as follows.

It is known that the total energy of a single bond is composed of two parts:

Etotal(r, T ) = EB(r) + EV (T ) =
{

0, evaporation

EC liquidization, or phase transition.
(9)

The physical ground for the model is that if one wishes to loosen an atom of the solid
thermally (melting or phase transition), one must supply sufficient thermal energy to overcome
the cohesion of the specific atom to its surroundings. The thermal energy required to loosen
one bond is the separation between EC and the minimal bond energy EB , as illustrated in
figure 1(b). If the thermal vibration energy EV (T ) is sufficiently large, all the bonds of the
specific atom will break and the atoms will escape from the bulk. At the evaporating point of
any kind of solid, Etotal = 0; at the critical point of melting or phase transition, Etotal = EC .
EC may vary from material to material and from process to process but for a specific material
and a specific process (melting or phase transition), the energy difference between EC and
Eeva(=0) should be identical. This means that the principle of thermal equilibrium holds for
the entire solid disregarding its size. Therefore, it is not surprising that the temperature is
always the same throughout the solid while the critical temperature varies from site to site if
the sample contains atoms with different CNs, which is the case of atoms at the surface or
at sites surrounding voids or stacking defects. This mechanism may explain why the latent
energy of fusion was measured as a broad hump rather than a sharp peak [40]. The idea of
identical EC for all the bonds in a solid supports the model of random fluctuation melting [41]
because the energy required to break one bond (separation between EB and EC) and hence the
energy needed to melt an individual atom with different CN may be different.

If the thermal energy required to loose a single bond of an atom in the i th atomic layer
and that for a bulk atom are EV C,i and EV C,b , respectively, the difference between the thermal
energy required to loose the corresponding atoms will be zi EV C,i − zb EV C,b, if all the zi and
zb bonds are identical in nature. zi and zb are the effective CNs of the corresponding atoms.
Hence, the total thermal energy at the critical point of a solid with N atoms is given as

EV C(D) = Nzb EV C,b +
∑
i�3

Ni (zi EV C,i − zb EV C,b)

= EV C(∞) +
∑
i�3

Ni zb EV C,b(zib EV C,ib − 1) (10)

where zib = zi/zb and EV C,ib = EV C,i /EV C,b = c−m
i are the normalized CN and the

normalized critical thermal energy, respectively. Here we quantize statistically NS or the
surface ‘shell’ of unknown thickness involved in other models as the contribution of individual
atomic layers. In dealing with a nanosolid, one has to consider bond by bond and atom by
atom. The statistic quatitization never means isolating thermally one bond or one atom from
another, as the thermal equilibrium holds for the entire solid disregarding its size. Therefore,
the relative change of EV C(D), for melting or transiting a nanosolid from one phase to another,
to EV C(∞) for the solid without bond relaxation is

�EV C(D)

EV C(∞)
= EV C(D) − EV C(∞)

EV C(∞)
=

∑
i�3

γi(zibc−m
i − 1). (11)
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On the other hand, integrating the specific heat from zero to the critical point, one will have

�EV C(D)

EV C(∞)
=

∫ TC (D)

0 Cp(D, T ) dT∫ TC (∞)

0 Cp(∞, T ) dT
− 1 ∼= �TC(D)

�TC(∞)
. (12)

It has been found reasonable to take Cp(D, T ) ∼= Cp(∞, T ) ∼= constant in the entire
temperature range [9] for the first order approximation though negligible errors may exist
because the Debye temperature and hence the specific heat CP is size and temperature
dependent [42–44]. Therefore, combining equations (11) and (12) leads to

�TC(D)

TC(∞)
= �EV C(D)

EV C(∞)
=

∑
i�3

γi(zibc−m
i − 1). (13)

TC can be any critical temperature for events such as phase transition, liquidation or evaporation.
Equation (13) indicates that �TC(D) originates from the difference between the cohesive
energy of an atom at the surface and that inside the bulk, zibc−m

i − 1. The approach favours
the atomistic model of Shi [45] and Jiang [46, 47] who ascribed the melting behaviour of
a nanosolid to the difference in the amplitude of atomic vibration at surface and bulk as
(−[(σs/σb)

2 − 1]). The lattice-vibration model has been applied well to the size-dependent
melting of compounds [46], metals [48], nanotubes [49], polymers [50], glasses [51], inert
gases [52], ice [53] and semiconductors [54]. In conjunction with the model of Shi and Jiang,
the current bond-OLS correlation premise could deepen the insight into the physical origin and
the general trends of the melting and phase transition behaviour of a nanometric solid. It is seen
that in the present premise the difference of atomic ECoh , �ECoh/ECoh = (zibc−m

i −1), claims
the origin for the change, compared with the lattice-vibration premise in which −[(σs/σb)

2−1]
governs. It is understandable that the amplitude of atomic vibration is determined by the
cohesive energy of the specific atom. At a free surface, the atomic ECoh is lower than that of
the bulk value and the vibration amplitude of an atom at the free surface is larger than that
inside the bulk at the same temperature. This bond-OLS correlation also supports the liquid-
shell model [55–57] because the lowered surface atomic ECoh allows the atom in the relaxed
region to be liquidized more easily than the bulk atom with higher ECoh . At the lower end
of the size limit, the homogeneous melting mechanism [58, 59] dominates. For a nanosolid
embedded in a matrix, the atomic cohesive energy at the interface may rise because of the
enhanced bond energy and slightly changed CN. Therefore, melting a nanosolid embedded in
a matrix should be harder [45]. Figures 3(a) and (b) show the consistency between predictions
and measurements of the size dependence of TC for ferromagnetic Ni [60, 61] thin films
(TC(∞) = 670 K) and the melting point, Tm , for an Au thin film (Tm(∞) = 1593 K) on C
substrate [62], with the data z1b = 1/3 (c1 = 0.88), z2b = 1/2 (c2 = 0.96) and m = 1.
Comparison between predictions of different dimensionality with observations indicates that
the thinnest Au film tends to be spherical-like—island mode of growth.

3.4. Phonon and photon emission

3.4.1. Surface phonon. The frequency of atomic vibration, ω ∝ f 1/2
k , depends on the force

constant that can be derived from the binding energy at equilibrium atomic separation:

fk = ∂2u(r)

∂r2

∣∣∣∣
r=d

∝ ε

d2
. (14)

The frequency change of the atomic vibration due to the bond-OLS correlation is given as

�ω(D)

ω(∞)
=

∑
i�3

γi

(
� fk

2 fk

)
=

∑
i�3

γi

[
1

2
(c−m

i − 1) + (ci − 1)

]
. (15)
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(a)

(b)

Figure 3. Agreement between predictions and measurements on the size dependence of (a) the
Curie temperature, TC , for Ni [57] and (b) the melting point, Tm , for Au on C [58] thin films.
Agreement is reached with the same data of z1b = 1/3 (c1 = 0.88), z2b = 1/2 (c2 = 0.96) and
m = 1.

For a nanosolid, the mean frequency change depends on the binding energy density
and the bond length (see equation (14)) and the portion of surface atoms, γi . Agreement
between prediction and observation of the size-dependent Raman shift (140 cm−1 peak) of
TiO2 nanosolid [63] is obtained by taking zib = 1/3 and 1/2, and m = 4, as shown in
figure 4(a).

3.4.2. Photon emission and photon absorption. The wavelength of a photon emitted from,
or absorbed by, a semiconductor depends on the bandgap of the solid. The band gap, and also
the core-level shift, is a function of the Hamiltonian of the solid [23]:

Ĥ (D) = Ĥ(∞) + Ĥ ′(D) = − h̄2∇2

2m
+ Vatom(r) + Vcry(r + RC)[1 + �(D)]

Ĥ ′(D) = Vcry(r + RC)�(D).

(16)



7792 C Q Sun et al

(a)

(b)

Figure 4. Agreement between predictions and measurements of the size dependence of (a) Raman
frequency shift (ω0 = 140 cm−1) of TiO2 [59], and (b) the blue-shift in photoluminescence of
CdS [28]. Agreement is reached at zib = 1/3 (z1b = 0.88), z2b = 1/2 (c2 = 0.96) and m = 4.

Vatom(r) is the intra-atomic trapping potential of an isolated atom, which determines the discrete
energy levels of the atom. Vcry(r + RC) is the crystal potential for an extended solid, that sums
the inter-atomic binding energy over the solid, which evolves the single energy level of an
isolated atom to the energy band when a solid forms with numerous atoms. Without the
crystal potential, no solid could form. Ĥ ′(D) is the contribution of surface relaxation to the
crystal field of an extended solid. RC is the lattice constant. �(D), being independent of the
particular form of the interatomic potential, is given by [24]

�(D) =
∑
i�3

γi
�v(di )

v(d)
+ δ(D) =

∑
i�3

γi (c
−m
i − 1) + δ(D) (17)

where δ(D) describes the contribution of intercluster interaction, which becomes insignificant
with increasing particle size D. For a single particle, δ(D) = 0. The bond-OLS-induced
bandgap expansion and core-level shift are derived as

�Eg

Eg
= �Ecore

Ecore
= �(D). (18)
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Intensive discussion on the modified Hamiltonian and its effect on the entire band structure
(bandgap, core-level shift, band tails and band width) of SiO, CuO, III–V and II–VI nanosolids
have formed the subject of [23]. Progress reported therewith showed consistency between
predictions and observations in the band characteristics of nanosolids. Figure 4(b) compares
the observed with the predicted size-dependent photoluminescence frequency of nanometric
CdS [64] with the data of z1b = 1/3 (c1 = 0.88), z2b = 1/2 (c2 = 0.96) and m = 4. Near the
lower end of the size limit, z1b is around one-quarter due to the increased surface curvature.

3.5. Other applications

The bond-OLS correlation has also been incorporated into other observations. For example,
properties pertaining to the crystal field such as the dielectric susceptibility χ(εr = χ + 1,
χ ∝ E−2

g [65]) and the saturation magnetization Ms [66] of a nanosolid will change accordingly
and they are detectable as mean values over the entire solid. Such relative changes can be
expressed in a dimensionless form:

−1

2

�χ

χ
= �Ms

Ms
= �(D). (19)

In comparison with the Penn model [67] and its modified forms [68, 69], simulation
of the size-dependent �χ/χ for a semiconductor nanosolid and its consequence on the
photon absorption coefficient has been reported in [24]. Predictions also agree with the XPS
measurements of the core-band shift of SnO2 and Ta2O5 [70] as well as the O–Cu [71], CdS[72]
and ZnS [73] nanoparticles. The surface stress enhancement has an influence on the Gibbs free
energy and hence the relaxation and transition of the ferroelectric and pyroelectric properties
of nanometric PZT oxides, as reported in [74, 75].

It is our opinion that any size-induced change of a physical quantity should be readily
defined with the known bulk value (as a reference) of the specific quantity and its functional
dependence on the atomic distance or its derivatives. This premise is purely a geometrical effect
at the surface that is independent of the nature of the bond. As a matter of fact, the binding
energy at equilibrium atomic separation is independent of the particular forms of the pair-wise
potential which is a resultant of different order CNs and the effect of charge distribution—no
matter whether the delocalized conduction electrons for metals or the localized electrons for
compounds. As demonstrated, the different m values for metals and for compounds may reflect
the chemical contribution.

4. Conclusion

Based on the Goldschmidt premise a bond-OLS correlation mechanism has been developed,
which has enabled us to unify the shape-and-size dependence of a nanosolid for a number of
properties and to link them to the effect of CN imperfection at a surface and its effect on the
bond energy.

The premise is indeed very simple and straightforward involving no assumptions or freely
adjustable variables. The only parameter used is m, that varies with the nature of the bond
involved. For elemental solid, m = 1; for compounds or alloys,m = 4. As demonstrated in this
work and earlier reports, this bond-OLS correlation premise has led to consistent understanding
of the size dependence of a considerable number of properties of nanosolids. These properties
include the mean lattice strain, surface stress and Young’s modulus, dielectrics (photon
absorption), bandgap (blue-shift in photoluminescence), core-level shift (chemical reactivity),
critical temperature for melting (supercooling and superheating) and phase transition (magnetic
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and dielectric). For the case of lattice expansion, this premise is also valid (letting ci > 1,
m < 0) unless the lattice relaxation is non-spontaneous. It should be understandable that a
spontaneous process is always accompanied by minimization of the system energy.

The significance of this premise lies not in the simulation of the observations; rather,
it provides guideline for designing nonmaterials or devices with desired functions based on
the predicted shape-and-size dependence. It is expected that all the traditional characteristic
constants relating to the atomic distance, whether direct or indirect, could be predictably
tunable by controlling the physical shape and size of the system, if the functional dependence
of these quantities is established, according to the current premise.
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